
The Structure of Radiatively Inefficient Black Hole Accretion Flows

Christopher J. White1, Eliot Quataert2 , and Charles F. Gammie3
1 Kavli Institute for Theoretical Physics, University of California Santa Barbara, Kohn Hall, Santa Barbara, CA 93107, USA; cjwhite@kitp.ucsb.edu

2 Department of Astronomy, University of California Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA
3 Department of Astronomy and Department of Physics, University of Illinois, Urbana, IL 61801, USA

Received 2019 September 30; revised 2020 January 11; accepted 2020 January 28; published 2020 March 4

Abstract

We run three long-timescale general-relativistic magnetohydrodynamic simulations of radiatively inefficient
accretion flows (RIAFs) onto non-rotating black holes. Our aim is to achieve steady-state behavior out to large radii
and understand the resulting flow structure. A simulation with adiabatic index Γ=4/3 and small initial alternating
poloidal magnetic field loops is run to a time of 440,000GM/c3, reaching inflow equilibrium inside a radius of
370GM/c2. Variations with larger alternating field loops and with Γ=5/3 are run to 220,000GM/c3, attaining
equilibrium out to 170GM/c2 and 440GM/c2. There is no universal self-similar behavior obtained at radii in
inflow equilibrium:the Γ=5/3 simulation shows a radial density profile with a power-law index ranging from
−1 in the inner regions to −1/2 in the outer regions, while the others have a power-law slope ranging from −1/2
to close to −2. Both simulations with small field loops reach a state with polar inflow of matter, while the more
ordered initial field has polar outflows. However, unbound outflows remove only a factor of order unity of the
inflowing material over a factor of ∼300 in radius. Our results suggest that the dynamics of RIAFs are sensitive to
how the flow is fed from larger radii, and may differ appreciably in different astrophysical systems. Millimeter
images appropriate for SgrA* are qualitatively (but not quantitatively) similar in all simulations, with a prominent
asymmetric image due to Doppler boosting.

Unified Astronomy Thesaurus concepts: General relativity (641); Relativistic fluid dynamics (1389); Relativistic
disks (1388); Low-luminosity active galactic nuclei (2033); Magnetohydrodynamical simulations (1966);
Magnetohydrodynamics (1964); Accretion (14)

1. Introduction

A common mode of accretion onto black holes is that of a
radiatively inefficient accretion flow (RIAF). Such systems
have nonzero net angular momentum, as opposed to classical
Bondi accretion (Bondi 1952), but because of inefficient
cooling they are dynamically hot, thick disks (Ichimaru 1977;
Rees et al. 1982; Narayan & Yi 1995), unlike standard thin-
disk models (Shakura & Sunyaev 1973). RIAFs are consistent
with a number of low-luminosity active galactic nuclei,
including SgrA* (Narayan et al. 1998).

Simulations of black hole accretion on horizon scales, where
general relativity (GR) cannot be neglected, are almost always
initialized as hydrostatic equilibrium torus solutions with
simple angular momentum prescriptions (Fishbone & Moncrief
1976; Kozłowski et al. 1978; Chakrabarti 1985; Penna et al.
2013). While such simulations tend to reach a well-defined
quasi-steady state in the inner portions of the flow, it is
unknown how much this state depends on the fact that the
simulations begin with a relatively artificial initial condition.

In thin accretion disks there is a large timescale separation
between the viscous and dynamical times and rapid radiative
cooling enables the flow to lose the memory of its initial
thermodynamic state. This is much less true in RIAFs, so one
might expect the dynamics of such flows to retain more
memory of how the matter is fed to the vicinity of the black
hole from larger radii. There are a number of analytic models
for the structure of RIAFs, which differ primarily in the
importance of non-radiative energy transport mechanisms, e.g.,
advection, convection/turbulence, and outflows (Narayan &
Yi 1994; Blandford & Begelman 1999; Narayan et al. 2000;
Quataert & Gruzinov 2000). It is unclear which, if any, of these
is a correct description of RIAFs or whether different non-

radiative energy transport mechanisms are important depending
on how matter is fed to the vicinity of the black hole.
Previous work has shown that the flow structure at small

radii in black hole accretion simulations depends on the
magnetic field structure threading the initial torus, in particular
how much magnetic flux there is at a given radius and/or
through the whole torus (Narayan et al. 2003; Beckwith et al.
2008). The initial field structure influences both the strength of
the resulting jet and whether the dominant angular momentum
transport is produced by small-scale turbulent stresses due to
the magnetorotational instability or by large-scale magnetic
stresses.
One of the computational challenges of studying the

connection between small- and large-scale flow structures is
that the region in steady state grows outward only sublinearly
with simulation time. Here we address this challenge with the
brute-force method of long-timescale simulations that reach
steady state over as extended a radial range as possible. We
then attempt to address whether a well-defined self-similar state
is reached at small radii independent of initial conditions.
The idea of running GR simulations for long times to

achieve steady state over large distances has been pursued
before, notably by Narayan et al. (2012).4 They considered two
instances of RIAF flows:a disk with standard and normal
evolution (SANE), and a magnetically arrested disk (MAD).
Their initial conditions differ only in whether the purely
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4 Stone et al. (1999), Igumenshchev & Abramowicz (2000), and Yuan et al.
(2012) studied the radial structure of RIAFs using axisymmetric hydrodynamic
simulations with an α viscosity, with outcomes differing with the details of that
viscosity. The differences between hydrodynamic and magnetohydrodynamic
(MHD) simulations make it difficult to know how to connect the results of
those simulations to the MHD problem considered here.
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poloidal magnetic field has the topology of a single loop in a
slice of constant azimuth, conducive to accumulating net
vertical magnetic flux and inducing a MAD state, or else has
multiple loops and thus stays in the SANE regime. Their SANE
simulation reaches steady state out to about 90 gravitational
radii after running for a time 2×105GM/c3.

Here we focus on the SANE case, primarily because such
models are a priori more similar to the self-similar analytic
models that still guide much of the intuition in thinking about
RIAF structure across many decades in radius. We extend
Narayan et al.’s (2012) work by running three variations on the
initial conditions to probe how the final state is sensitive to
details of the initial state, with the longest simulation run for
a time 4.4×105GM/c3. The numerics and setup of the
simulations are detailed in Section 2. We present accretion rates
and related global quantities in Section 3 and radial profiles of
quantities in steady state in Section 4. The global inflow and
outflow structure is analyzed in Section 5, and observational
consequences are discussed in Section 6. Our conclusions are
summarized in Section 7.

Throughout this work, all length scales will be expressed in
implicit units of gravitational radii GM/c2, where M is the
black hole mass. Likewise, times are in units of GM/c3 and
velocities are in units of c, with units derived from these
following naturally. The magnetic field contains an implicit
factor of p1 4 , so, for example, the magnetic pressure is
given by h=p B B 2ij

i j
mag if the components B i are measured

in a Minkowski frame comoving with the fluid.

2. Numerical Setup

We perform our simulations with the GRMHD code
Athena++ (White et al. 2016). The code uses a second-order
vanLeer integrator at a Courant–Friedrichs–Lewy number of
1/4, where 1/2 is the maximum stable value for this integrator
in three spatial dimensions, along with second-order modified
vanLeer spatial reconstruction from Mignone (2014). Fluxes
are calculated via the HLLE Riemann solver.

While less diffusive Riemann solvers such as HLLD exist for
relativistic MHD (Mignone et al. 2009), we choose HLLE
based on two considerations. First, shocks in HLLD are
narrowed to be only one or two cells thick. In a multi-
dimensional finite-volume method, such steep gradients can
lead to the conserved variables in a cell entering a physically
inadmissible state during a single time step, manifesting as a
variable inversion failure when trying to recover the primitive
variables. Given that these simulations need to take tens of
millions of time steps, we want to minimize the chance of
catastrophic inversion failures. Second, HLLE is common
practice in the GRMHD community. For example, in the recent
code comparison of Porth et al. (2019), which includes
Athena++, the nine codes exclusively employ either HLLE
or the more diffusive LLF Riemann solver, yet they are able to
reach agreement with sufficient resolution. HLLD would
enable us to resolve the same phenomena with fewer cells,
but we are willing to use HLLE with higher resolution here in
order to achieve robustness over very long integration times.

Spacetime is fixed to be that of a nonspinning black hole,
a=0. The simulations employ spherical Kerr–Schild coordi-
nates (t, r, θ, f) with volume element q- =g r sin2 . Our
coordinate system covers the entire sphere, including the
appropriate transmissive polar boundary. In the radial direction
the cell boundaries are logarithmically spaced from r=1.7

(inside the horizon) to r=104. In the poloidal direction we
compress the cells near the equatorial plane as in Gammie et al.
(2003) (except we adjust cell spacing rather than the metric).
The result is that cells are uniformly spaced in a midplane-
compressed coordinate qc related to the standard θ via

q q q= + 0.35 sin 2 . 1c c( ) ( )
Due to the particularly long integration times required for

these simulations, we additionally use static mesh refinement to
keep the part of the grid near the poles at low resolution. The
root grid consists of 120×20×20 cells in the radial, polar,
and azimuthal directions respectively. The region p <5
q p p- <2 3 10c∣ ∣ is refined by a factor of 2 in each
dimension, and the region q p p- <2 5c∣ ∣ is refined by a
factor of 4 relative to the root grid. The cells at the midplane
thus have thickness q pD » »0.0118 266.
The initial conditions are those of the hydrostatic equilibrium

solution of Fishbone & Moncrief (1976) with a pressure
maximum at r=52 and a peak density of ρ=1. The latter
sets an arbitrary scale for the fluid mass, which is taken to be
negligible compared to the black hole mass. SimulationsA
andB have an inner edge at r=25 and an adiabatic index of
Γ=4/3, while simulationC has an inner edge at r=25.1 and
Γ=5/3. Indices of Γ=4/3 and Γ=5/3 are approximations
to the thermodynamics appropriate for super-and sub-Edding-
ton RIAFs, respectively. The slight change of inner edge radii
helps to make the extent of the mass distribution of
simulationC similar to that of the other two. The resulting
densities are shown in Figure 1, with the midplane run of ρ
with radius on the top and a vertical slice on the bottom.
We add a weak magnetic field to this initial torus. The field

is derived from the purely azimuthal vector potential with
component
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The form of this function is chosen to allow for a variable
number of counterrotating loops in both directions, and to give
roughly constant values for plasma b º- p p1

mag gas, the ratio
of magnetic to gas pressure. We choose the parameters

= -p 10gas,min
8, =r 30min , =r 1000max , q p= 6min , and

q p= 5 6max in all simulations. For simulationsA andC we
have Nr=6 and Nθ=4, while in simulationB we set Nr=6
and Nθ=1. In all cases the field strength is normalized such
that

ò
ò

b r q f

r q f

-

-
=

-
-

g dr d d

g dr d d
10 , 4

1
2 ( )

where the integrals exclude the background atmosphere outside
the torus. These field configurations are illustrated in Figure 2.
Finally, we perturb the initial velocities inside the torus as

follows. We consider the normal observer velocity components
bº +¢u u ui i i 0, where b i is a component of the standard +3 1

2
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shift. We introduce small motions in the poloidal directions
according to

D = D¢ ¢u
R

r
u k R k zsin cos , 5aR z

1
0

3 ( ) ( ) ( )

D = D¢ ¢u
z

r
u k R k zsin cos , 5bR z

2
0 2

3 ( ) ( ) ( )

where q=R r sin and q=z r cos are standard cylindrical
coordinates. We choose D = 0.030 and p=k k, 50R z .

SimulationA is run to = ´t 4.4 105, while variations B
and C are run to = ´t 2.2 105. The cost of these runs is
approximately 1.1 core-hours per simulation time unit (Intel
Xeon E5-2670 CPU) or 0.7 core-hours per time unit (Intel
Xeon Platinum 8160 CPU).

3. Accretion Rates

We follow Narayan et al. (2012) and divide the simulations
into logarithmic chunks in time. The eight boundaries of these
seven chunks are ´3.89 104, ´5.5 104, ´7.78 104,

´1.11 105, ´1.556 105, ´2.2 105, ´3.111 105, and
´4.4 105. We will use a consistent color scheme to label

these chunks throughout all figures.
The mass accretion rate is defined in the usual way,

integrating over a spherical shell:

r q f= - -M u g d d . 61∮ ( )

The run of the horizon value of M with time is given in
Figure 3. As can be seen in the figures, the first time chunks are
chosen to be well after the initial transience. SimulationsA
andB begin depleting their mass reservoir, while simulationC
has much more mass and thus only shows signs of decreasing
M at the very end of the run. By the end of chunk5
( = ´t 2.2 105), simulationsA, B, andC have lost 29%, 19%,
and 12% of their initial masses, with 15%, 7.0%, and 9.5% of
the original mass going through the horizon. After simula-
tionA has run for twice as long, it has lost a total of 61% of its
mass, with 17% going into the black hole. Some of this mass

Figure 1. Density ρ for the hydrostatic equilibrium initial conditions. The left panels show the setup for simulationsA andB, while the right panels show
simulationC. Midplane values as a function of radius are shown on top, with a vertical slice in the xz-plane shown on the bottom. The power-law floor is a background
atmosphere inserted for numerical purposes.
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loss is due to bulk outflows originating from smaller radii
(discussed in Section 5), while the rest comes from the outer
parts of the initial torus moving outward as they receive angular
momentum from the inner parts. In simulation A, the accretion
rate approaches a scaling of ~ -M t 4 3 at very late times, as
shown by the dotted line. This is the expected scaling for a
RIAF in the absence of outflows removing mass or angular
momentum. Since the simulation has outflows and is probably
not fully in the asymptotic regime where -t 4 3 would be
expected, it seems likely that the agreement between the
simulation and this analytic expectation is fortuitous.

We can also look at M as a function of radius. This is done
in Figure 4, where the separate lines are time averages over
different chunks. In steady state we expect these values to be
close to constant out to some radius, and indeed they are even
as this constant decreases with time. The flatness of the curves
at the inner radii indicates the solution is in a quasi-steady state

and that numerical density floors do not play a large role in the
inner parts of the simulations.
For later analysis, we use the M versus radius curves to

define a “viscous radius” inside of which the system has
reached inflow equilibrium. We choose the point where M
drops to -e 1 2 times its horizon value. These radii are
delineated by the points in Figure 4. The range over which
equilibrium is established does indeed move outward in time,
extending to r=370 in chunk7 of simulationA and to
r=170 and r=440 in chunk5 of simulationsB andC. For a
constant h/r and constant α model we would expect the
viscous radius to move outward in time as t2 3. The numerical
evolution is generally slower than this, as we discuss further
below in Section 4.
The energy accretion rate is very similar to the total mass

accretion rate. Define

q f= -E T g d d , 7a1
0∮ ( )

q f= -E T g d d , 7bmag mag
1
0∮ ( ) ( )

where the stress-energy tensor is given by

= +mn mn mnT T T , 8agas mag ( )

r= +
G

G -
+mn m n mnT p u u p g

1
, 8bgas gas gas
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⎝

⎞
⎠ ( )

= + -mn m n mn m nT p u u p g b b2 , 8cmag mag mag ( )

= l
lp b b 2, 8dmag ( )

=b u B , 8ei
i0 ( )

= +b
u

B b u
1

. 8fi i i
0

0( ) ( )

Runs of E and Emag with radius, averaged in time over
chunk5, are shown in Figure 5. The other time chunks show
essentially the same behavior. The overall energy accretion rate
tracks mass very closely. This is to be expected, since rest mass
density ρ dominates over gas pressure pgas, as well as the
contribution of the electromagnetic field. That is, we are mostly
measuring rest mass being advected into the black hole. The
electromagnetic contribution to the flux of energy, shown by
the dotted line, is negative, indicating an outflow. However the
magnitude of this component is only one part in a thousand of
the total. This would be significantly larger for a spinning
black hole.
Just as with mass and energy we monitor the flux of angular

momentum, defining

q f= - -J T g d d . 91
3∮ ( )

This is also shown in Figure 5. Again we see the radially
constant plateaus indicating approximate steady state, though
the deviations begin at slightly smaller radii than for M . The
steady-state value of J M  does not change with magnetic field
topology (see simulations A and B), but does change in the case
of a different Γ (simulation C).
We additionally calculate the horizon-penetrating flux

j
p

q f= -
=M

B g d d
4

2
. 10

r r1 2
1

hor

∮ ∣ ∣ ( )


Figure 2. Initial magnetic field configurations for simulationsA andC (top)
and simulationB (bottom). The streamlines show the poloidal field loops, and
the background color is plasma b-1. While both configurations have no net
vertical flux when averaged over sufficiently large volumes, only the one on
top has no net vertical flux on any shell of constant radius. Note that the scale
of these images is different from that in Figure 1; the initial field does not fill
the entire torus.
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This is the same quantity as fBH defined in Tchekhovskoy et al.
(2011) and Narayan et al. (2012), where our explicit factor of

p4 is implicit in their units, except here we use the

instantaneous M not convolved with any smoothing kernel in
time. The run of j with time in the two simulations is shown in
Figure 6. SimulationsA andC, with their small initial field

Figure 3. Horizon accretion rates as functions of time. The time chunks used for later analysis are indicated by the colors, where even the earliest chunk begins well
after the sudden spike in accretion that is a remnant of the initial conditions. SimulationC begins with more mass than the other two, so the torus does not begin to
significantly deplete over the course of the simulation, despite the higher accretion rate. The dotted line indicates the slope of a power law going as -t 4 3.

Figure 4. Time-averaged mass accretion rates as functions of radius. Level portions of the curves indicate the establishment of inflow equilibrium. The points denote
the outer edges of nominal viscous ranges, which are extending outward as time progresses in all simulations.

Figure 5. Time-averaged energy and angular momentum accretion rates as functions of radius. In all cases the rates are normalized by the horizon value of M before
being averaged in time over the fifth time chunk ( ´ < ´ t1.556 10 2.2 105 5). Both J and E should be constant in steady state, as they are, with »E M 1 
indicating rest mass advection dominates the energy budget. Electromagnetic energy outflow is a small fraction of the total (a consequence in part of our use of
nonspinning black holes). The negative sign of Emag corresponds to outflow of energy as measured at infinity.
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loops (see Figure 2), stay very much in the SANE regime, with
j  10 at late times. For comparison, the MAD simulations in
Tchekhovskoy et al. (2011) have j » 47. SimulationB goes
through a burst of higher flux, though it does not stay high as in
a true MAD disk. The behavior of simulationB matches that of
the SANE simulation in Narayan et al. (2012), which uses a
similar initial field topology.

4. Radial Profiles in the Disk

We now turn to characterizing the properties of the disks,
starting with profiles of disk properties as functions of radius.

We define the spherical scale height at a radius to be

q p r q f

r q f
=

- -

-
h

r

g d d

g d d
tan

2
, 11

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∮
∮

∣ ∣
( )

where the integrals are taken over spheres at that radius. The
run of this quantity with radius, averaged within time chunks, is
shown in Figure 7. In all simulations, this scale height stays
between approximately 0.1 and 0.7, increasing toward larger
radii and changing little over time. SimulationC, with
G = 5 3, stays somewhat thicker at very small radii compared
to the other cases.

With scale height in hand, we can define averages of
quantities over the disk proper, here taken to be the region
within one scale height of the midplane. The average density
we define is

ò

ò
r

r q f

q f
á ñ =

-

-

g d d

g d d
. 12disk

disk

( )

Note that a more appropriate volume element might use the
determinant of the metric restricted to +2 1 hypersurfaces of
constant r, or even +2 0 surfaces of constant t and r.
However, all these choices differ by factors that depend only on
r in the case of nonspinning black holes, so they all lead to
equivalent definitions of rá ñ.
The profiles of density are shown in the upper panels of

Figure 8, where the points indicate inflow equilibrium as
defined in Section 3. The profiles generally approach power
laws in radius, especially at very late times in simulationA.
The very inner regions of simulationsA andB, inside »r 10,
have a shallower power-law slope when compared with the
outer part of the viscous range. This is likely produced by the
rapid acceleration needed close to the horizon:conservation of
mass implies that the density profile flattens as the velocity
accelerates. Somewhat surprisingly, simulationC does not
display this knee, though it does have a slight persistent kink
between r=50 and r=100.
The lower panels of Figure 8 show the power-law slopes of

the density profiles. Specifically, for an abscissa r0 the ordinate
is the slope of a linear regression to the set of points

rá ñrlog , log( ) for which r is within a factor of approximately
2 of r0. The inner regions of simulationsA andB have slopes
of very roughly -1 2. The range over which this holds does
not increase after a point, even at very late times, as in
simulationA. The middle of the inflow equilibrium range in
simulationA eventually tends toward a slope of approximately
-3 2 at very late times. SimulationB does not reach
sufficiently late times and does not show signs of converging
to a constant slope. SimulationC, on the other hand, has a
slope of between -1 2 and −1 over all radii in equilibrium.
Analytic models of RIAFs predict power-law density profiles
far from the horizon ranging from -r 3 2 (Narayan & Yi 1994)
to -r 1 2 (Narayan et al. 2000; Quataert & Gruzinov 2000), and
everything in between (Blandford & Begelman 1999). One
might expect that there would be a well-defined self-similar
state of the accretion flow that obtains at radii r 1 , where the
impact of the black hole horizon on the flow structure is no
longer significant. The density profiles in Figure 8 are not
consistent with this ansatz. Instead, the profiles depend on the
thermodynamics, parameterized by adiabatic index here, and
initial magnetic field structure.
We can average other quantities in a density-weighted way.

For any quantity q other than ρ, define

ò

ò

r q f

r q f
á ñ =

-

-
q

q g d d

g d d
. 13disk

disk

( )

Although not shown explicitly here, all three accretion flows
are slightly sub-Keplerian, as can be seen by examining áWñ for
Boyer–Lindquist angular velocity W = u uBL

3
BL
0 . The average

infall velocity -á ñvr , where =v u ur 1 0, is well below the
freefall value.
The averages of magnetization bá ñ-1 are given in Figure 9.

Magnetization decreases with increasing radius out to »r 25 in
all simulations, but it remains relatively flat beyond that in
casesA andB, even when equilibrium is established much
further out. The levels of these flat portions can change in time,
however, first decreasing and then increasing at late times
(simulation A). We note that simulationsA andB, whose only
difference is the initial field topology, reach the same profile of

Figure 6. Horizon-penetrating magnetic fluxes as functions of time.
SimulationB does not stay in a MAD state, but it does build up more
coherent flux than simulationsA andC. This is not unexpected given the initial
conditions (Figure 2), where each radius in simulationB has net vertical flux,
while those in simulationsA and C do not.
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bá ñ-1 by the fourth time chunk, indicating that the saturated
field strength may not strongly depend on details of initial
conditions. In simulationC, the profile of bá ñ-1 levels off near
where rá ñ does, and then proceeds to again decrease with
increasing radius beyond that.

The increased magnetization at small radii influences the
rates at which our viscous radii move outward. Given the
scaling ~ -t r h rvisc

3 2 2( ) , and given the observed thicknesses
~h r r1 4 (Figure 7), we might expect equilibrium to be

established out to a radius ~r tvisc by time t. However, the radii
marked in Figure 4 do not advance in time this rapidly. For
example, chunks1 and7 are separated by a factor of 8 in time,
while equilibrium is only established 2.5 times farther out in
the latter compared to the former for simulationA. This can be
explained by noting we also expect a~ -tvisc 1, and a b~ -1.
Thus, b~ -r tvisc

2 3 , and thus equilibrium is established much
more rapidly at small radii with strong magnetization than at
large radii.

Figure 7. Time-averaged scale heights as functions of radius. The disks have roughly the same thicknesses in all three cases, though simulationC is somewhat more
spherical overall (see also Figure 10). The scale heights do not change much over time.

Figure 8. Density profiles in radius, averaged over the disk and averaged over time chunks. The profiles themselves are displayed in the top panels, with their power-
law slopes shown below. The points are at the same viscous radii as in Figure 4. SimulationsA andB show shallower slopes inside »r 10 compared to farther out,
while simulationC has an intermediate slope at small radii and a shallow plateau at intermediate radii. There is no convergence to a well-defined density profile at
intermediate radii (between the ISCO and viscous radii), as one might expect if the solutions were approaching a self-similar RIAF solution.
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5. Global Structure of the Accretion Flow

Going beyond radial profiles, we show the late-time magnetic
field in the poloidal plane in Figure 10, superimposed on the time-
averaged density. This magnetic field is obtained by averaging B1

and B2 in azimuth and averaging in time over the last common
time chunk (5) available for all simulations. It shows what steady-
state structure arises from the initial fields in Figure 2.

We can immediately see that simulationA has a more
ordered, radial field near the midplane when compared to the
other two cases, despite simulationC having the same initial
field topology. This can be explained by the velocity structure
of the flows, as discussed below. SimulationA also shows near
cancellation in vertical fluxes at fixed radius; i.e., Bz is
antisymmetric across z=0. SimulationB, on the other hand,
shows a field topology with Bz symmetric across the midplane.
While the net flux integrated over a large radial extent may
vanish, there is generally net flux at any given radius. These
symmetries are also found in the initial conditions, indicating
that even at these late times the initial field’s imprint on the
field topology remains. It is also striking how spherical the
density distribution is in simulation C:there is variation by
only a few factors in density from equator to pole. By contrast,

simulationsA andB show the more “standard” disk structure
of a dense midplane and a low-density polar region.
The net accretion rates shown in Figures 3 and 4 do not fully

describe the radial motion of matter, since there can be
outflows partially negating mass inflow elsewhere. While this
will certainly happen over small time and length scales due to
turbulence, coherent outflows may persist even when averaged
over turbulence.
We observe large-scale outflows in our simulations,

particularly with more ordered magnetic fields. Figure 11
shows the velocity field for each simulation in the poloidal
plane, averaged in azimuth with density weighting and again
averaged over the last common time chunk. SimulationB
shows an accretion disk with a low radial velocity, together
with fast, low-density, polar outflows. This is similar to the
now canonical assumed structure of RIAFs from earlier
simulations (e.g., Hawley & Balbus 2002). SimulationsA
andC, however, show the reverse. In these cases matter is
falling in through the poles, with outflow occurring in the disk.
This disk outflow pattern is particularly strong in simulationA.
We can further decompose M into incoming and outgoing

components based on radial mass fluxes that have been

Figure 9. Profiles of magnetic-to-gas pressure ratios in radius, averaged in a density-weighted way over the disk and then averaged over time chunks. In all cases the
magnetization steeply declines with radius in the inner parts of the disk and tends to level off at large radii. Note that the trends with time are not necessarily
monotonic.

Figure 10. Average late-time (chunk 5, ´ < ´ t1.556 10 2.2 105 5) poloidal magnetic field, with background color indicating average density. SimulationA
displays a more coherent radial field in the disk than the other two. Additionally, the symmetric/antisymmetric character of Bz across the midplane z=0 follows from
the character of the initial fields, shown in Figure 2. The density structure in simulationC is quite spherically symmetric compared to the equatorial disk and evacuated
polar region seen in simulationA.
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averaged in time and azimuth:

òp r q= - á ñ -
p

M u g d2 min , 0 , 14ain
0

1( ) ( )

òp r q= á ñ -
p

M u g d2 max , 0 . 14bout
0

1( ) ( )

The runs of these quantities with radius are given in Figure 12.
We know M Min out–  must be constant in radius from Figure 4,
and Min is close to constant, with Mout being a small
perturbation over most of the viscous range. The fact that
Mout becomes negligible inside »r 10 in simulationsA andC
tells us that the disk outflows we observe (see Figure 11) do not
extend all the way to the horizon. In simulationB, Mout also
drops off at small radii, matching how the polar outflow shown
in Figure 11 reaches a stagnation surface at »r 25. Our results
on the disk outflows are broadly consistent with Narayan et al.
(2012), who also find that outflows were at most an order unity
perturbation to the accretion rate for the radial range they
simulate.

What is the physical origin of the outflows seen in Figure 12
and the flow structure seen in Figure 11? Two possible
hydrodynamic mechanisms for large-scale flows of this kind

are convection and meridional circulation. We examine these
quantitatively in Appendix A and find that they are not very
compelling for explaining our numerical results.
The fact that both simulationsA andC display polar inflows

and disk outflows despite having different values of Γ and
different initial tori indicates this phenomenon is not limited to
a small set of hydrodynamic initial conditions. SimulationsA
andB, meanwhile, have identical hydrodynamic initial condi-
tions yet vastly different steady-state velocity structures. This
points to the original magnetic field topology as being
important in determining the inflow and outflow structure (as
was emphasized by, e.g., Beckwith et al. 2008).
As discussed in Section 2, the initial field in simulationB

consists of elongated loops in the poloidal plane (see Figure 2).
While there is no net vertical flux when averaged over
sufficiently large radial extents, there is net flux at any given
radius. Thus accretion brings a sequence of alternating net
fluxes to the black hole over time (Figure 6), causing bursts in
accretion rate (Figure 3). While the black hole has no spin and
thus there are no Blandford–Znajek jets (Blandford &
Znajek 1977), the net flux in the disk may be enough to
drive a polar outflow via the Blandford–Payne mechanism
(Blandford & Payne 1982) or related MHD processes. This can

Figure 11. Average late-time (chunk 5, ´ < ´ t1.556 10 2.2 105 5) poloidal velocity field in the simulations. The background colors highlight the radial velocity,
with blue indicating inflow. SimulationsA andC display polar inflows with outflows in the disk, while simulationB has polar outflows and at least some disk inflow.

Figure 12. Bulk ingoing and outgoing mass fluxes at late times (chunk 5, ´ < ´ t1.556 10 2.2 105 5) in the simulations. Over the viscous range, inflow is
relatively constant, while outflow is less in magnitude and decreases inward. Over the factor of ∼300 in radius that our solutions are in viscous equilibrium, the total
outflow rate is only comparable to the inflow rate. There is no bulk outflow inside »r 10, indicating that this is inside the stagnation radius of any polar outflows
(simulation B, see Figure 11). Note that the incoming and outgoing mass fluxes necessarily combine to the net inflow rates shown in Figure 4.
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prevent any loosely bound polar inflow coming in from the
disk at larger radii from reaching the black hole.

SimulationsA andC, on the other hand, have no net flux at
any radius. It is more difficult for the magnetic field in these
cases to launch polar outflows, so material can fall to the black
hole near the polar axes. With enough polar inflow, the
liberated gravitational potential energy can help to unbind
material, driving it outward in the equatorial plane.

We quantify the extent to which material is bound with the
Bernoulli parameter, which we define as

r
º -

á ñ
á ñ

-
wu

Be 1, 15a0 ( )

rº +
G

G -
+w p p

1
2 , 15bgas mag ( )

with averages being taken in azimuth and time. This is similar
to Equation (11) of Narayan et al. (2012). Plots of Be for the
last common time chunk of each simulation are given in
Figure 13. Note <Be 0 throughout the initial tori.

We see that most of the disks in all three cases have become
unbound. At the same time, the polar regions of simulationsA
andC are bound, while they are very much unbound in
simulation B. The initial magnetic field topology thus has a
strong effect on the overall energetics and dynamical structure
of RIAFs. This occurs primarily, we believe, via the energy
redistribution and outflows associated with magnetic stresses,
not just the angular momentum transport they produce.

Evidence for this comes from the fact that over a large range
of radii all three simulations have similar radial accelerations,
vanishing near the midplane and directed inward at high
latitudes. The presence of a narrow outflow along the polar
axis, for instance, is not due to consistent, outward, electro-
magnetic acceleration along the axis, but rather to the
combined effect of accelerations at other locations. We
quantify these accelerations by writing the inhomogeneous
geodesic equation for a perfect fluid as

t
= + +

m
m m mdu

d
f f f , 16agrav gas EM ( )

= -Gm
ab
m a bf u u , 16bgrav ( )

= - m ma
af

w
P p

1
, 16cgas gas ( )

= -  - m ma
a b a

bf
w
P p b b

1
, 16dEM mag( ( ) ( )

where = +ma ma m aP g u u is the projection operator relative to
the fluid velocity. Figure 14 shows the radial components of
these three forces along an arc of constant radius r=50,
computed from the fluid state obtained by averaging in time
and azimuth over chunk5. The gravitational (including
centrifugal) force is closely balanced by the gas pressure
gradient; the magnetic pressure gradient and Maxwell stress are
both small. In simulationA but not in simulationC, there may
be some ongoing outward radial acceleration near the upper
and lower disk surfaces. In these locations fgrav

1 approaches 0,
indicating a large centrifugal force nearly balancing gravita-
tional attraction even without pressure support.
Appendix B shows the steady-state behavior of two

additional runs, paralleling simulationsA andB in how their
initial fields differ but using a smaller initial torus. The
dichotomy between polar inflows and outflows persists, with
inflows occurring where there is no local net vertical flux in the
initial conditions. These smaller tori, which are closer in size to
those most often employed in the literature, are more tightly
bound, so even the case with polar inflow does not develop an
equatorial outflow. The latter result highlights that conclusions
drawn from small torus simulations might be inaccurate in
some cases.

6. Observational Consequences

Given the length of time we have run these simulations, we
have a large amount of data on their time variability. In
particular, for simulationA we have high-cadence samples of
the horizon value of M sampled with a time interval D =t 1.
For a SgrA*-like mass of ´ M4.3 106 , this corresponds to a
sampling period of 21 s.
We construct the power spectrum of the time series using

Welch’s method for overlapping segments of time durations
ranging from 27 (used to calculate a smooth spectrum at high
frequencies) to 215 (used at low frequencies), applying a Hann
window to each segment. An overall linear trend in the
quantities tlog and Mlog  is subtracted before calculating each
spectrum. We do this for the union of chunks6 and7. The

Figure 13. Average Bernoulli parameter (see Equation (15)) in the simulations, calculated in the fifth time chunk ( ´ < ´ t1.556 10 2.2 105 5). Only in
simulationB is the polar region unbound. The disks have largely become unbound, despite the fact that the initial conditions are bound everywhere with negative
Bernoulli parameter.
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results are shown in Figure 15. Here we refer to =P fPf as the
power, where Pfis the power per unit frequency.

The spectrum has a slope ~ -d P d flog log 2.59 over the
range - - f10 102 1, somewhat steeper than ideal red noise.
The slope is −2.38 if we analyze chunks1–5 instead of 6 and
7. A turnover to a flat spectrum is apparent at approximately
= -f 10 3, especially in simulationA. SimulationsB andC

have similar spectra at low frequencies, both in amplitude and
slope. However, their M values are only sampled every 100
time units, so we cannot measure their spectra at frequencies
above 5×10−3.

Numerical models of RIAFs have been widely used to
predict event-horizon-scale emission and images. Such models
form the basis for interpreting Event Horizon Telescope images
of M87 (The Event Horizon Telescope Collaboration 2019a,

2019b, 2019c) and SgrA*. Since our simulations provide three
different realizations of the near-horizon structure of RIAFs, it
is valuable to assess whether their predictions for the near-
horizon emission differ. To do so, we employ the code
ibothros (Noble et al. 2007) to generate images of
synchrotron emission at 230 GHz in post-processing. We take
644 snapshots from chunk5, separated byD =t 100. For each
one, we assume thermal synchrotron radiation from the
electrons, with a simulation-to-electron temperature ratio of 4.
The density scale of the simulation is adjusted to match the
observed flux of 2.4 Jy of SgrA* (Doeleman et al. 2008),
assuming we are viewing the disk edge-on.
Figure 16 displays the average image resulting from stacking

the 644 frames for each model. SimulationA shows the most
extended disk component outside the typical bright ring around
the circular dark region. This equatorial component is most
compact in simulationC, brightening the ring but not
increasing its width on the approaching side of the disk. These
differences can be understood via the average density and
temperature structures in the flows. CaseC has the steepest
density profile in the inner region (Figure 8), as well as higher
temperatures (as can be seen in the larger scale height,
Figure 7). Thus, the emission we see will be dominated by a
small region near the photon orbit, slightly spread out along the
ring but not radially. In contrast, caseB and especially caseA
have emission from a wider range of radii near the disk
midplane.

7. Conclusion

We have run and analyzed three long-timescale simulations
of RIAFs around nonspinning black holes. Building on
Narayan et al. (2012; see also related hydrodynamic work by
Yuan et al. 2012) our goal has been to understand whether a
well-defined self-similar structure of the accretion flow
develops that is independent of the simulation initial condi-
tions, and whether such a state is described by existing analytic
models of RIAFs. All of our simulations are “SANE,” i.e., they
do not have significant net magnetic flux over an appreciable
range of radii. We run a fiducial simulation (A) with small
alternating field loops (see Figure 2) and adiabatic index
G = 4 3 to = ´t 4.4 105. Variations with either larger loops

Figure 14. Forces acting in the radial direction (see Equation (16)) for a slice at r=50, calculated in the fifth time chunk ( ´ < ´ t1.556 10 2.2 105 5). The
balance of forces is similar in all cases, with a disk supported by rotation and gas pressure and with inward accelerations at high latitudes.

Figure 15. Power spectrum for time series of M at the horizon in simulationA.
The data are taken from Chunks6–7, covering ´ ´ t2.2 10 4.4 105 5.
The dotted line shows a slope of −2.59, which fits the spectrum over the
indicated range.
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(B) or G = 5 3 (C) are run to = ´t 2.2 105. Note that
G = 4 3 and G = 5 3 are rough approximations to super-and
sub-Eddington RIAFs, respectively. The simulations reach
inflow equilibrium, defined here as where M falls to -e 1 2 of its
horizon value, past r=370, r=170, and r=440, respec-
tively. Energy and angular momentum fluxes are as constant
with radius as mass fluxes over much of this range. We note
that many of our principal conclusions are not unique to these
long-timescale runs. On the contrary, Appendix B shows that
they hold even for the smaller tori typically used in GRMHD
simulations.

One of our principal results is that the dynamical structure of
RIAFs is sensitive to initial conditions, at least over the time-
and length-scales that we can afford to simulate. There is no
evidence for a unique flow structure that loses memory of the
initial conditions. This is not necessarily surprising given the
lack of timescale separation among thermal, viscous, and
dynamical times in RIAFs. Moreover, the absence of radiative
cooling implies that the dynamics in RIAFs are particularly
sensitive to modest changes in flow energetics (produced, e.g.,
by differences in magnetic field structure).

In more detail, Figure 8 shows that the G = 4 3 simulations
maintain shallow slopes in density of rá ñ » -d d rlog log 1 2
in the innermost regions, with slopes at least as steep as
approximately -3 2 in the outer regions that are still in steady
state. In the G = 5 3 case, we see slopes closer to−1 in the inner
regions and-1 2 in the outer regions. In a given simulation, we
find that there is no clear convergence of rá ñd d rlog log to a
particular value in the steady-state flow exterior to the inner

- GM c10 30 2, as might be expected if there were a unique
self-similar solution for the structure of RIAFs. By contrast, such a
well-defined radial profile is seen in hydrodynamic α models of
RIAFs (e.g., Stone et al. 1999; Yuan et al. 2012). It is unclear if
this difference between the hydrodynamic and MHD models
reflects the very different angular momentum and energy transport
physics in the two different simulations or if our simulations still
do not have sufficient dynamic range to reach a quasi-self-similar
state. We suspect the former.

The larger magnetic field loops in simulationB relative to
simulationA (see Figure 2) result in the buildup of coherent
magnetic flux at the horizon. While this simulation does not
stay in a MAD state, it shows signs of alternating between

“semi-MAD” states with oppositely directed fluxes. This does
not have a noticeable effect on radial profiles of scale height,
density, or magnetization, but it can affect the velocity structure
of the accretion flow. In particular, the coherent vertical flux is
enough to drive polar outflows in simulationB, whereas both
simulationsA andC have polar inflows of material
(Figure 11). The absence of polar outflows in simulationC is
particularly striking. as the density profile becomes nearly
spherical with a density contrast of only a factor of a few
between the equator and poles (Figure 10).
The polar inflows we find are not readily explained by

models for convective stability or meridional circulation (see
Appendix A). However even a small amount of inflow can
release enough energy to unbind significant portions of the
disk, which for RIAFs is at best marginally bound. This is
likely why the flow structure is sensitive to the magnetic field
initial conditions, since the latter influences the angular
momentum and energy transport at essentially all times in the
simulation. Overall, we find that unbound outflows change the
horizon-scale accretion rate by only a factor of order unity
relative to the accretion rate at ~r 300 (see Figure 12),
consistent with Narayan et al. (2012).
The sensitivity of the flow structure and dynamics in our

simulations to modest changes in initial conditions (all within
the context of highly artificial initial conditions) suggests that
there is likely to be significant variation in the properties of
RIAFs in nature depending on exactly how matter is supplied
to the vicinity of the black hole from larger radii. Under-
standing this better in future work would be very valuable and
would impact problems as diverse as accretion in the Galactic
Center from stellar winds (e.g., Ressler et al. 2018) to the
growth of supermassive black holes by highly super-Eddington
accretion (e.g., Begelman & Volonteri 2017). We note that our
calculations assume a nonspinning black hole, and future work
should explore whether spin exacerbates or mitigates the
sensitivity to how matter is supplied.
Numerical models of RIAFs have been widely used to

predict event-horizon-scale emission, variability and images,
particularly in the context of the well-studied systems M87
(e.g., Dexter et al. 2012; Mościbrodzka et al. 2016, 2017; Ryan
et al. 2018; Chael et al. 2019) and SgrA* (e.g., Mościbrodzka
et al. 2014; Ressler et al. 2017; Chael et al. 2018). As a result,

Figure 16. Images of the average 230 GHz thermal synchrotron emission from the three simulations, modeled using parameters appropriate for an edge-on view of
SgrA*. SimulationsA and B have images more dominated by the equatorial disk, while simulationC shows a more prominent photon ring. This is a consequence of
the differences in the scale heights and density profiles of these simulations (Figures 7 and 8). All three images have the same total flux.
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we have made preliminary attempts to understand the
observational implications of the diversity of flow structure
and dynamics we find in our RIAF simulations. Toward this
end, we calculate the power spectrum of M in time for
simulationA, using high-cadence samples at time intervals of
GM c1 3 (21 s for = ´M M4.3 106 ), shown in Figure 15.

The spectral power goes as ~ -P f 2.59 at high frequencies. Our
data shows a turnover toward white noise ( f 0) at low
frequencies; such a turnover has been measured in the
submillimeter emission of SgrA*, occurring at a timescale of
t » 8 hr (Dexter et al. 2014). This timescale corresponds to
a frequency in our geometric units of = ´ -f 7 10 4 (for
reference, this is the reciprocal of the orbital period at r= 36),
which is consistent with where we see the turnover in M
power.

Motivated by the Event Horizon Telescope, we also
calculate millimeter images of synchrotron emission for
parameters appropriate for SgrA* (see Figure 16). All of our
different realizations of RIAFs produce qualitatively similar
images, dominated by a Doppler boosted region along with a
faint ring (Figure 16). There are, however, interesting
differences in the size of the emitting region and the
prominence of the equatorial accretion disk, which is much
less dominant in simulationC (G = 5 3) relative to simula-
tionsA and B (G = 4 3).
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Appendix A
Analysis of Convection and Meridional Circulation

One possible cause of bulk outflows in disks is a stationary
convection pattern. As described in Quataert & Gruzinov (2000)
we can check for convective stability in the disk by examining
the gradients of entropy rº -Gs plog gas( ) and azimuthal
velocity qºfv r u usin 3 0( ) . We construct the quantity

= -Q r C AB4 , 17conv
6 2( ) ( )

where A, B, and C are defined by (A2–A4) of Quataert &
Gruzinov, using density-weighted averages of s and fv in time
and azimuth and using the last time chunk ´1.556

< ´ t10 2.2 105 5 available to all simulations. Stability
requires <Q 0conv . The values for Qconv within one scale
height of the midplane are shown in Figure 17. The two
simulations with disk outflows, A and C, are slightly unstable
against convection in the midplane, in contrast to simulation B,
which is marginal. However, simulation C is quite stable at
slightly higher latitudes, where there is still a strong outflow.
Thus, convection does not seem to fully explain the different
bulk patterns shown in Figure 11.
Classical convection is not the only way to achieve large-

scale motions in a disk. A sufficiently small vertical
stratification in entropy can lead to meridional circulation in
which the material in the midplane of the disk moves outward,
with inward flow through the coronal layers. Following the
constant M case presented in Philippov & Rafikov (2017) we
define the circulation parameter
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where dq denotes ¶ ¶q Rlog log . If this is positive we expect
outflow in the midplane. Qcirc is plotted for the same time
chunks in Figure 18. In all three cases the values are positive
throughout the disk. However, the values are similar for all
three simulations; thus if this were the cause of the outflows in
simulationsA andC, we would expect it to lead to the same
velocity structure in simulationB, which is not seen.

Figure 17. Convective stability measure Qconv (Quataert & Gruzinov 2000) within one scale height of the midplane for the fifth time chunk
( ´ < ´ t1.556 10 2.2 105 5) of each simulation. Convection is expected for positive values. While simulationsA andC show outflows in the disk, they are
no less stable than simulationB.
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Appendix B
Comparison with Smaller Tori

Here we briefly mention two additional setups that are run
for comparison. These two variants on the same small initial
torus show how slight changes in the initial magnetic field can
lead to different velocity structures in steady state.

In both cases we start with a Fishbone & Moncrief (1976)
torus around a nonspinning black hole with inner edge r=9,
pressure maximum r=17, peak density r = 1, and adiabatic
index G = 4 3. The grid extends inside the horizon and out to
r=50. At root level it contains 243 cells, and we add three
successive levels of mesh refinement, obtaining an effective
resolution of 1923 within 37.5° of the midplane.
The single-loop variant has a magnetic field initialized via

rµ -fA max 0.2, 0 , 19( ) ( )

while the multiple-loop variant employs (2) with =pgas,min
-10 8,

=r 10min , =r 35max , q p= 7 18min , q p= 11 18max , Nr=3,
and =qN 2. In both cases the normalization is such that the
density-weighted average of b-1 is 10−2, and we perturb the
initial state via (5) with D = 0.020 and p=k k, 2 5R z .

Figure 18. Meridional circulation criterion (Philippov & Rafikov 2017)
calculated in the midplane for the fifth time chunk ( ´ 1.556 105

< ´t 2.2 105) of each simulation. Positive values predict a circulation pattern
with outflow in the midplane. The values are positive everywhere, but they are
roughly the same for all three simulations, whereas the simulations have
different behaviors.

Figure 19. Horizon accretion rates as functions of time for the two small tori.
The case with a single loop is a nonspinning analogue of the standard torus
used to test and compare GRMHD codes as in Porth et al. (2019).

Figure 20. Radial density profiles and their power-law slopes for the small tori,
averaged in time over  t8000 �10,000. The points are at the same viscous
radii as in Figure 19. The single-loop and multiple-loop variants are not too
dissimilar from simulationsB andA (their closest analogues) insofar as their
slopes in the inner regions are shallower than the value of −1 seen in
simulationC.
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The single-loop variant is comparable to standard tori widely
used in the literature when, for example, testing and
demonstrating a new GRMHD code (Gammie et al. 2003;
Antón et al. 2006; White et al. 2016; Porth et al. 2017) or
comparing such codes (Porth et al. 2019), though around a
nonspinning black hole here. It is similar to a scaled-down
version of simulationB. The other small torus is more akin to a
scaled-down version of simulationA. The only difference
between the two is the magnetic field configuration, which is
chosen to remain SANE in both cases.

Due to their small size, we can run these tori through steady
state and even through depletion (by t=15,000 for the single-
loop case, slightly later with multiple loops) with relatively
little computational expense. Figure 19 shows the run of M
with time in both cases.

Even with these widely used, standard, small tori, the final
density and velocity structures depend on the details of the
initial field configuration. Density profiles, analogous to
Figure 8, are shown in Figure 20, averaged in time over

8000�t�10,000. Figure 21 shows the corresponding
velocity structure, analogous to Figure 11. With a single loop,
a relatively strong polar outflow is driven, even though there is
no black hole spin, nor is a MAD state obtained. This reflects
the behavior of simulationB, where some net vertical flux
proves to be sufficient for launching polar outflows. On the
other hand, the multiple-loop variant follows simulationA in
having polar inflow at all radii.
The midplane in the multiple-loop small torus does not

experience the same bulk outflow as simulationA. However,
this can be attributed to larger Fishbone & Moncrief tori being
less bound. The polar inflows in simulationA could unbind
most of the accretion disk, while the inner parts of the multiple-
loop disk can still flow inward despite the liberation of
gravitational potential energy nearby.
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